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Abstract

The global bifurcations in modal interactions of an imperfect circular plate with one-to-one internal resonance are

investigated. The case of the third-order subharmonic resonance, in which an excitation frequency is near triple natural

frequencies, is considered. The equations governing nonlinear oscillations of an imperfect circular plate are reduced to a

system of non-autonomous ordinary differential equations via Galerkin’s procedure. The method of multiple scales is used

to obtain a system of autonomous ordinary differential equations, and then Kovačič and Wiggins’ method is used to

investigate the global dynamics of the plate. Having found a sufficient condition under which Silnikov-type homoclinic

orbit can exist, we failed to observe any numerical evidences of global bifurcation.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A plate experiences mid-plane stretching when deflected. The influence of this stretching on the dynamic
response increases with the amplitude of the response. This situation can be described by nonlinear
strain–displacement equations and a linear stress–strain law which give us the dynamic analogue of the von
Karman equations with geometric nonlinearity. Modal interactions in nonlinear dynamic responses of a plate
subjected to harmonic excitations have been investigated in two directions. The one is to investigate local
bifurcations and the other global bifurcations. Local bifurcations are concerned with bifurcations of fixed
points of vector fields and maps. Global bifurcations are about a qualitative change in the orbit structure of an
extended region of phase space. Homoclinic and heteroclinic bifurcations are typical examples of global
bifurcations [1].

For local bifurcations, modal interactions of rectangular plates with one-to-one internal resonance have
been studied by many researchers including Chang et al. [2]. Many works on modal interactions of perfect or
imperfect, circular plates have been done since Efstathiades [3] derived the equations governing the free,
undamped oscillations of non-uniform, circular plates. Sridhar et al. [4] and Hadian and Nayfeh [5] studied
symmetric responses in primary resonance of a circular plate with three-mode interaction. Lee and Kim [6]
studied combination resonances of the plate. Sridhar et al. [7] derived solvability conditions for asymmetric
responses of a circular plate. Nayfeh and Vakakis [8] found subharmonic traveling waves in a circular plate.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. A schematic diagram of a circular plate.
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Yeo and Lee [9] found that solvability conditions by Sridhar et al. [7] were misderived, and corrected the
conditions. Using the corrected solvability conditions, Lee and Yeo [10] investigated modal interactions of a
circular plate on an elastic foundation, with one-to-three internal resonance. Lee et al. [11] studied the effect of
the number of nodal diameters on the interactions of the plate. Contrary to works on perfect circular plates
[4–11], Touzé et al. [12] and Thomas et al. [13], respectively, investigated theoretically and experimentally
modal interactions of imperfect circular plates with free edge.

Study of global bifurcations in modal interactions of rectangular plates with one-to-one internal resonance
had been initiated by Sethna and his colleagues [14–16]. Using the Melnikov method, they observed that
breaking of heteroclinic orbits of a dynamical system governing a nearly square plate leads to Smale
horseshoes leading chaos. Kovačič and Wiggins [17] developed global perturbation techniques for detecting
homoclinic and heteroclinic orbits in a class of four-dimensional ordinary differential equations that are
perturbations of two-degree-of-freedom Hamiltonian systems. Combining the higher dimensional Melnikov
theory with geometrical singular perturbation theory and the theory of foliations of invariant manifolds, they
obtained a sufficient condition for the existence of Silnikov-type homoclinic orbits. Their method has been
applied to several problems including rectangular plates [18–22].

Since global bifurcations of circular plate have not been studied, in this paper we investigate global
bifurcations in modal interactions of an imperfect circular plate shown in Fig. 1, with one-to-one internal
resonance. The case of the third-order subharmonic resonance, in which an excitation frequency is near triple
natural frequencies, is considered. The equations governing nonlinear oscillations of imperfect circular plates
are reduced to a system of non-autonomous ordinary differential equations via Galerkin’s procedure. The
method of multiple scales is used to obtain a system of autonomous ordinary differential equations, and then
Kovačič and Wiggins’ method is used to investigate the global dynamics of the plate.

2. Formulation of the problem

The equations governing the free, undamped oscillations of non-uniform circular plates were derived by
Efstathiades [3]. Damping and forcing terms are added, then the non-dimensionalized equations of motion of
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an imperfect circular plate shown in Fig. 1 can be given as follows:
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F is the force function which satisfies the in-plane equilibrium conditions (in-plane inertia is neglected), and
w ¼ w0=z0 is the non-dimensional deflection in the middle surface, where w0 is the deflection of middle surface
and z0 is the thickness at centre. r ¼ r0=R is the non-dimensional radial coordinate, where r0 is the radial
coordinate and R is the radius of the plate. y is angular coordinate and pðr; y; tÞ is the forcing function.
D ¼ D0=E0z30 is the non-dimensional flexural rigidity, where D0 ¼ Eh3

0=12ð1� n2Þ is the flexural rigidity which
is defined by Young’s modulus, E, the thickness, h0, Poisson’s ratio,n, and Young’s modulus at center, E0.
S ¼ E0z0=Eh0 is a non-dimensional function, r ¼ r0R

4=E0z0 is a parameter proportional to the density, r0,
and
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The relationships between F, w and the in-plane displacements, ur and uy, are given by
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For plates which are nominally homogeneous and nominally flat it will be assumed that the small variation
of S will not greatly affect the value of the force function F. Thus S is taken as constant (E1) in Eqs. (1)
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and (2). We assume that D and d are functions of r, and rh is a function of r and y. Then the imperfection of
the plate is due to the variation of rh with y.

It is well known [3,8] that perfect circular plates possess pairs of degenerate modes with equal natural
frequencies and mode shapes with the same number of nodal lines. In reality, because of inevitable small
imperfections, it has been shown that such modes have slightly different modal frequencies and that one
configuration is moderately rotated with respect to the other, so that the degeneracy is broken [3,12,13].

We are, in this study, interested in motions when the plate is harmonically excited. In order to investigate
the so-called third-order sub-harmonic resonance, we consider the case that the natural frequencies of two
modes involved are near one-third of the excitation frequency. The interactions of two modes having slightly
different frequencies, generated from the breaking of degeneracy, are considered. Then, the steady-state
solution in Eqs. (1) and (2) can be approximated to [3]

wðr; y; tÞ ¼ fðrÞ x1ðtÞ cosðny� y0Þ½ þx2ðtÞ sinðny� y0Þ�, (3)

where fðrÞ is the shape function which is determined by boundary conditions, and x1ðtÞ and x2ðtÞ are called
coordinates of cosine and sine modes, respectively. The deflection of plate w implies a standing wave when
either coordinate is zero, and a traveling wave when both coordinates are non-zero. n is the number of nodal
diameters. y0 is caused by the imperfections of the plate and is a constant defined by the form of rh as follows:

y0 ¼
1

2
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, (4)
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The angle y0 determines the position of the nodal diameters. In the case of perfection (rh is the function of r

only), the positions of nodal diameters are arbitrary because A0 ¼ 0 and A11 ¼ A21 in Eq. (4).
When both rh and D are functions of y, two y0’s in Eq. (3) become distinct. Thus, the nodal diameters of

two modes do not lie symmetrically [3].
Using Galerkin’s procedure in Eq. (3), we obtain a system of non-autonomous ordinary differential

equations as follows [3]:
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where � ¼ d/dt and e is a small parameter. oi, d, g and mi are defined as follows:
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where

C1 ¼ K11ðA11 tan
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C2 ¼ K11ðA21 tan
2 y0 þ 2A0 tan y0 þ A11Þ,

N1 ¼ sec y0fA21P1 � A0P2 � ðA0P1 � A11P2Þ tan y0g,

N2 ¼ sec y0fA11P2 � A0P1 þ ðA0P2 � A21P1Þ tan y0g,
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0Þð1þ tan2 y0Þ,

P1 ¼

Z 2p

0

Z 1

0

p�ðr; yÞfr cos nydrdy; P2 ¼

Z 2p

0

Z 1

0

p�ðr; yÞfr sin nydrdy,



ARTICLE IN PRESS
M.H. Yeo, W.K. Lee / Journal of Sound and Vibration 293 (2006) 138–155142
K11 ¼ �p
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Ā1, Ā2, Ā3 and B̄2 are determined by n, r, n, f, and the shape function of F [3].
In order for system (6) to have the characteristic of hardening spring, we assume that g is positive. And we

consider the harmonic excitation pðr; y; tÞ ¼ p�ðr; yÞ cos lt.
In system (6), we assume that m1 ¼ 0. Since m1 ¼ 0 means N1 ¼ 0, P1 and P2 must satisfy the relation

ðA0 � A11 tan y0ÞP2 ¼ ðA21 � A0 tan y0ÞP1. (9)

Then we have

m2 ¼
N2

M
¼

P1 sec y0
A0 � A11 tan y0

or
P2 sec y0

A21 � A0 tan y0
. (10,11)

Noting o1 � o2 (due to breaking of degeneracy) and l=3 � oi (due to third-order sub-harmonic resonance),
we introduce two detuning parameters b and s as follows:

o2 ¼ o1 þ eb; l ¼ 3o2 þ es. (12a,b)

In order to use the method of multiple scales we assume

xiðtÞ ¼ xi0ðT0;T1Þ þ exi1ðT0;T1Þ þOðe2Þ, (13)

where Ti ¼ eit, i ¼ 0; 1. Substituting Eq. (13) into Eq. (6) and equating coefficients of like powers of e yield
O(1):

D2
0x10 þ o2

1x10 ¼ 0; D2
0x20 þ o2

2x20 ¼ m2 cos lT0. (14a,b)

OðeÞ:

D2
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2ðx
3
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10Þ. (15b)

The general solution of Eq. (14) can be written in the form

x10 ¼ A1ðT1Þ expðio1T0Þ þ cc; x20 ¼ A2ðT1Þ expðio2T0Þ þ L expðilT0Þ þ cc; (16a,b)

where L ¼ m2=2ðo
2
2 � l2Þ and cc represents the complex conjugate of the preceding term. The functions A1(T1)

and A2(T1) are to be determined by satisfying the solvability conditions for boundedness of the solution. Term
L expðilT0Þ will give the non-resonance response [6,23]. Substituting Eq. (16) into Eq. (15) and using Eq. (12),
we obtain solvability conditions as follows:

ið2A01 þ do2
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2 þ 2jA2j
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2
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where a prime denotes differentiation with respect to the slow time T1 and Ān denotes the complex conjugate
of An. Next we let

Ai ¼
ffiffiffiffiffiffiffi
2ai

p
exp½iĵi�; i ¼ 1; 2, (18)

where ai and ĵi are the real functions of T1. Substituting Eq. (18) into (17) and separating the result into real
and imaginary parts yields

a01 ¼ �do
2
1a1 þ 2go1a1fa2 sin 2ðj1 � j2Þ þ

ffiffiffi
2
p

L
ffiffiffiffiffi
a2

p
sinð2j1 þ j2Þg, (19a)
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where j1 ¼ ĵ1 � ðbþ s=3ÞT1 and j2 ¼ ĵ2 � ðs=3ÞT1.
In order to apply the perturbation method given by Kovačič and Wiggins [17] we consider the following

canonical transformation to bring system (19) to the appropriate form

q1 ¼ j1 � j2; q2 ¼ j2; p1 ¼ a1; p2 ¼ a1 þ a2. (20)

This transformation leads to the following set of a equations in (p1, q1,p2,q2) coordinates:
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þ3
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2
p
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_q2 ¼ � p1 þ 3p2 � sþ p1 cos 2q1

þ e
3fffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � p1
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where

ec ¼ do2=2g; ef ¼ L; b ¼ b=go2; s ¼ s=3go2; t ¼ go2T1. (22)

In Eq. (21) a dot denotes the differentiation with respect to t. The Hamiltonian function H is given as
follows:

Hðp1; q1; p2; q2Þ ¼ H0ðp1; q1; p2; q2Þ þ eH1ðp1; q1; p2; q2Þ, (23)
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where

H0ðp1; q1; p2; q2Þ ¼ �bp1 þ
3

2
p2
2 � sp2 � p1ðp2 � p1Þð1� cos 2q1Þ, (24a)

H1ðp1; q1; p2; q2Þ ¼
ffiffiffi
2
p

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � p1

p
½ðp2 � p1Þ cos 3q2 þ p1 cosð2q1 þ 3q2Þ�. (24b)

Observing that the coordinate system (p1, q1,p2,q2) is singular at p1 ¼ 0, we introduce the following
canonical transformation in order to avoid the singular behavior. We will soon see that the fixed points at
p1 ¼ 0 play an important role in defining the dynamics of our system:

x ¼
ffiffiffiffiffiffiffi
2p1

p
cos q1; y ¼

ffiffiffiffiffiffiffi
2p1

p
sin q1; I ¼ p2; j ¼ q2. (25)

It is observed that in view of Eqs. (20) and (25) when cosine mode (x1ðtÞ) vanishes, x ¼ y ¼ 0 and I becomes
a2, amplitude of sine mode (x2ðtÞ).

Eq. (21), H0 and H1 are expressed as follows:

_x ¼ yðbþ 2I � x2 � 2y2Þ þ egx þOðe2Þ ¼ �
qH0

qy
þ egx þOðe2Þ, (26a)

_y ¼ xð�bþ y2Þ þ egy þOðe2Þ ¼
qH0

qx
þ egy þOðe2Þ, (26b)

_I ¼ egI þOðe2Þ ¼ �
qH0

qj
þ egI þOðe2Þ, (26c)

_j ¼ 3I � s� y2 þ egj þOðe2Þ ¼
qH0

qI
þ egj þOðe2Þ, (26d)

where

gx ¼ � cxþ gbyðI þ x2 þ y2Þ

þ
fxð2I � x2 � 2y2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I � x2 � y2
p sin 3jþ

fyð5I � 2x2 � 3y2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I � x2 � y2

p cos 3j

¼ �
qH1

qy
� cxþ gbyðI þ x2 þ y2Þ, ð27aÞ

gy ¼ � cy� 3gbxI �
fxðI � y2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I � x2 � y2

p cos 3j�
fyð2I � 2x2 � y2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I � x2 � y2
p sin 3j

¼
qH1

qx
� cy� 3gbxI , ð27bÞ

gI ¼ � 2cI � gbxyð2I � x2 � y2Þ þ 3fxy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I � x2 � y2

p
cos 3j

þ 3f ðI � y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I � x2 � y2

p
sin 3j

¼ �
qH1

qj
� 2cI � gbxyð2I � x2 � y2Þ, ð27cÞ

gj ¼
f ð3I � x2 � 2y2Þ cos 3jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I � x2 � y2
p �

fxy sin 3jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I � x2 � y2

p ¼
qH1

qI
, (27d)

H0ðx; y; I ;jÞ ¼
3

2
I2 � sI �

1

2
y2ð2I � x2 � y2Þ �

b

2
ðx2 þ y2Þ, (28a)

H1ðx; y; I ;jÞ ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I � x2 � y2

p
½ðI � y2Þ cos 3j� xy sin 3j�. (28b)
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3. The unperturbed system

First, we examine the dynamics of the unperturbed system. Setting e ¼ 0 in Eq. (26) yields the following set
of completely integrable equations describing the unperturbed system as follows:

_x ¼ yðbþ 2I � x2 � 2y2Þ; _y ¼ xð�bþ y2Þ, (29a,b)

_I ¼ 0; _j ¼ 3I � s� y2. (29c,d)

We observe that Eq. (29a) and (29b) are completely independent of j, and I ¼ constant. Thus, we need to
study the phase flow in (x,y) phase space only. We recall from Eq. (20) that p1op2 and thus we are interested
in the behavior of our system inside the circle described by the following equation:

x2 þ y2p2I . (30)

It is observed that since in view of Eq. (25) ðx2 þ y2Þ=2 ¼ a1, the equality holds when a2 ¼ 0. In other words
inequality (30) is nothing more than a2X0.

In phase space (x,y), we are interested in the flow inside a circle whose radius is
ffiffiffiffiffi
2I
p

. In Eqs. (29a) and
(29b), all possible fixed points ( _x ¼ _y ¼ 0) are

I : x ¼ 0; y ¼ 0,

II : x ¼ 0; y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I � I1

p
,

III : x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðI þ I1Þ

p
; y ¼ �

ffiffiffi
b
p

, ð31Þ

where I1 ¼ �b=2.
In case of bo0, when 0oIoI1, the origin is the only fixed point (case I) which is a center. At I ¼ I1 a

pitchfork bifurcation occurs at the origin generating a saddle at the origin and two centers (case II). In case of
b40, when 0oIo� I1, there exist a center at the origin (case I) and two saddles (case II). At I ¼ �I1, each of
the saddles bifurcates into two centers (case III) on a circle x2 þ y2 ¼ 2I .

The bifurcation diagram in the I–b space, of the unperturbed system (29) is shown in Fig. 2. Three
bifurcation lines denoted by thick solid lines and the types of fixed points are shown in the figure. Subscripts c
and s represent center and saddle, respectively. The bifurcation diagrams in the x–y–I space, of the
unperturbed system (29) are shown in Fig. 3. The phase portraits in the x–y space, in Fig. 4, of the
unperturbed system (29) reflect the bifurcation diagrams in Fig. 3. In Fig. 4, thick lines denote the circles
x2 þ y2 ¼ 2I , on which a2 ¼ 0. In this paper, we are interested in a homoclinic orbit B1 in Fig. 4 (a–1),
corresponding to the case of bo0 and I4I1. The origin is connected to itself by a pair of symmetric
homoclinic orbits, each of which is described by

bðx2 þ y2Þ þ y2ð2I � x2 � y2Þ ¼ 0. (32)

In four-dimensional space (x–y–I–j), there exist two-dimensional invariant manifold M0 and three-
dimensional homoclinic manifold G, respectively, which are given as

M0 ¼ fðx; y; I ;jÞjx ¼ 0; y ¼ 0; I4I1;j 2 T1g, (33)
Ic Ic, IIs

Is, IIc Ic, IIc, IIIs

I = − I1 = b  2I = I1 = − b  2

0 b

I

Fig. 2. Bifurcation diagram in the I–b space, of the unperturbed system (29).
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x2 + y2 = 2I

I = I1

I = 0

I = − I1

I = 0

I

b < 0

b > 0

y

x

I

I

(a)

(b)

Fig. 3. Bifurcation diagrams in the x�y�I space, of the unperturbed system (29).
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G ¼ fðx; y; I ;jÞjx ¼ xhðt; IÞ; y ¼ yhðt; IÞ; I4I1;

j ¼
R t

0 D1H0ðx
hðs; IÞ; yhðs; IÞ; IÞdsþ j0g;

(34)

where ðxhðs; IÞ; yhðs; IÞÞ give time parametrization of the homoclinic orbit. Any trajectory on G approach M0 as
t!�1, and j0 2 T1 (one-dimensional tours) is a constant, which is determined from the initial conditions.

In Eqs. (29c) and (29d) the dynamics restricted to the invariant manifold M0 is described as follows:

_I ¼ 0; _j ¼ 3I � s. (35a,b)

Since x ¼ y ¼ 0 means a1 ¼ 0, the dynamics on M0 designate a standing wave by the sine mode. Since the
unperturbed system has no excitation i.e. L ¼ 0 in Eq. (16b), the response of sine mode x20 becomes
A2ðT1Þ expðio2T0Þ þ cc. Using Eqs. (18)–(20), (22) and (25) we have

x20ðtÞ ¼ 2
ffiffiffiffiffiffiffi
2a2

p
cos½o2T0 þ ðs=3ÞT1 þ j�.
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x

x

(a - 1) b < 0, I > I1

(a - 2) b < 0, I < I1

(b - 1) b > 0, I > − I1

(b - 2) b > 0, 0 < I < - I1

B1

Fig. 4. Phase portraits in the x�y space, of the unperturbed system (29).
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Integrating Eq. (35b) with respect to t we can get j ¼ ð3I � sÞtþ j0, where j0 is an integrating constant.
Transforming s and t, respectively, into s and et via Eq. (22), we have a steady state periodic response

x20ðtÞ ¼ 2
ffiffiffiffiffi
2I
p

cos½o2ð1þ 3egIÞtþ j0�,

whose frequency o2ð1þ 3egIÞ is shown to depend on the energy level I determining the amplitude of the
response. This tendency implies that the cubic nonlinearity of the system has the characteristic of a hardening
spring.

In Eqs. (35), we can see that _j ¼ 0 for I ¼ I r, where Ir ¼ s=3. This value is called the resonant value of I.
The case of I ¼ Ir corresponds to the circle of fixed points in (I,j) plane. The cases of IaIr correspond to the
circles, which are periodic orbits in (I,j) plane. These circles are shown in Fig. 5. Since Ir4I1 we can see the
relationship as follows:

s4�
3

2
b. (36)

If a particle starts marching along the homoclinic orbit, an infinite amount of time is required by the particle
to return to the saddle point itself. During this time, in view of Eq. (35) j may change by an infinite amount
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Fig. 5. Flow in (I,j) plane at x ¼ y ¼ 0.

M.H. Yeo, W.K. Lee / Journal of Sound and Vibration 293 (2006) 138–155148
when IaIr. However, if I ¼ Ir, j changes by a finite amount:

Dj � jð1; IrÞ � jð�1; IrÞ. (37)

This value is called phase shift. In order to calculate Dj, we need an expression for the homoclinic orbit at
I ¼ Ir. For convenience, we use the coordinate system (p1, q1), which is a polar coordinate system
corresponding to the rectangular coordinate system (x,y). In Eqs. (21a) and (21b), consider e ¼ 0.

_p1 ¼ 2p1ðIr � p1Þ sin 2q1 ¼ �
qH̄

qq1

, (38a)
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p 1
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I

q1

B1

B0

0 � − q1�/2 �

Fig. 6. Phase portraits in (p1, q1) plane when I4I1.
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_q1 ¼ �b� ðI r � 2p1Þð1� cos 2q1Þ ¼
qH̄

qp1

, (38b)

where

H̄ðp1; q1Þ ¼ �bp1 � p1ðIr � p1Þð1� cos 2q1Þ. (39)

Since system (38) is periodic with period p in q1, we consider the range of q1 from 0 to p. Then in Eq. (38),
fixed points are given as

center : ðp̂1; p=2Þ saddles : ð0; q̂1Þ; ð0;p� q̂1Þ, (40)

where

p̂1 ¼
1

4
ð2Ir þ bÞ; q̂1 ¼

1

2
cos�1 1þ

b

Ir

� �
. (41a,b)

The homoclinic orbit B1 in rectangular coordinate system (x,y) corresponds to the heteroclinic orbit B1 in
coordinate system (p1,q1) shown in Fig. 6. On the heteroclinic orbit B1 we have

q1ð�1Þ ¼ q̂1 when t!�1 (42a)

and

q1ð1Þ ¼ p� q̂1 when t!1. (42b)

In Eq. (39), this heteroclinic orbit B1 on which H̄ðp1; q1Þ can be obtained from H̄ð0; q̂1Þ, is given as

p1 ¼ Ir þ
b

1� cos 2q1

. (43)

Setting e ¼ 0 and I ¼ Ir in Eq. (21d), adding the result and Eq. (38b), and substituting Eq. (43) into the
result, we obtain _q1 þ _q2 ¼ 0, which gives q1 þ q2 ¼ C0, a constant. In view of Eq. (25) we have the relation
yðt; IrÞ ¼ C0 � q1ðtÞ. Then phase shift defined in Eq. (37) is calculated by Eq. (42) as follows:

Dj ¼ �q1ð1Þ þ q1ð�1Þ ¼ 2q̂1 � p. (44)
4. The perturbed system

From Eqs. (26a,b) and (27a,b) we can see that subspace x ¼ y ¼ 0 is invariant even when ea0. Under
perturbation (when ea0), M0 becomes a locally invariant two-dimensional manifold Me described as follows:

Me ¼ fðxe; ye; I ;jÞjxeðI ;jÞ ¼ 0þ ex1ðI ;jÞ þOðe2Þ,

yeðI ;jÞ ¼ 0þ ey1ðI ;jÞ þOðe2Þ; I4I1;j 2 T1g. ð45Þ



ARTICLE IN PRESS
M.H. Yeo, W.K. Lee / Journal of Sound and Vibration 293 (2006) 138–155150
Substituting xe and ye into Eqs. (26c) and (26d), respectively, we have the flow on Me as follows:

_I ¼ eð�2cI þ 3
ffiffiffi
2
p

fI3=2 sin 3jÞ þOðe3Þ, (46a)

_j ¼ 3I � sþ e
3fffiffiffi
2
p

ffiffiffi
I
p

cos 3jþOðe2Þ. (46b)

In order to examine the dynamics of invariant manifold Me in the neighborhood of I ¼ Ir, we introduce the
rescaling

I ¼ Ir þ
ffiffi
e
p

h; t ¼ ~t=
ffiffi
e
p

, (47)

where ~t represents another slow time. The flow on Me is described as

h0 ¼ �3
ffiffiffi
2
p

fI3=2r ðK1 � sin 3jÞ þ
ffiffi
e
p

Gðh;jÞ þOðeÞ, (48a)

j0 ¼ 3hþ
ffiffi
e
p

F ðh;jÞ þOðeÞ, (48b)

where

K1 ¼

ffiffiffi
2
p

c

3f
ffiffiffiffi
I r

p ; F ðh;jÞ ¼
3f

ffiffiffiffi
Ir

pffiffiffi
2
p cos 3j; Gðh;jÞ ¼ �

3f
ffiffiffiffi
Ir

pffiffiffi
2
p hð2K1 � 3 sin 3jÞ

and a prime denotes differentiation with respect to ~t.
When e ¼ 0, Eq. (46) is a Hamiltonian system with Hamiltonian function

Lðh;jÞ ¼
3

2
h2
þ

ffiffiffi
2
p

fI3=2r ð3K1jþ cos 3jÞ. (49)

Fig. 7 shows two fixed points of the Hamiltonian system (h0 ¼ �Lj and y0 ¼ Lh) as follows:

center : p0 ¼ ð0;jcÞ saddle : q0 ¼ ð0;jsÞ, (50)

where js ¼ ð1=3Þsin
�1 K1 and jc ¼ ð1=3Þðp� sin�1 K1Þ. Since value of non-dimensionalized parameter K1

must be in the domain of arcsine function, condition j K1 jp1 should be satisfied. Since the Hamiltonian
system is periodic in j of 2p=3 we only consider the range of 0ojo2p=3. Under perturbation saddle points q0
and qe become center p0 and sink pe, respectively. A shaded region in Fig. 7(a) is an approximation of domain
of attraction of sink pe in Fig. 7(b). The region is enclosed by the homoclinic orbit connecting the unstable
fixed point q0 to itself. The level of Hamiltonian function on the orbit is equal to Lð0;jsÞ.

Let us consider the dynamics on Me, in the neighborhood of Ir defined as an annulus:

Ae ¼ fðx; y; h;jÞjx ¼ 0; y ¼ 0; jhjoeC; j 2 T1g, (51)

where C40 is a constant, chosen sufficiently large as to enclose the unperturbed homoclinic orbit within it.
Contrary to unperturbed system, where x ¼ y ¼ 0 means that the response of sine mode x20 becomes

A2ðT1Þ expðio2T0Þ þ cc, in perturbed system x ¼ y ¼ 0 means that the response consists of resonance and
non-resonance ones having frequencies o2 and l, respectively, as shown in Eq. (16b). Since x ¼ y ¼ 0 means
a1 ¼ 0, the dynamics on Ae designates a standing wave having two frequencies o2 and l.

Fig. 7(b) shows a transformation of this annulus Ae being a small segment of the perturbed invariant
manifold Me. The stable and unstable three-dimensional manifolds of Ae, respectively, denoted as W sðAeÞ and
W uðAeÞ, are the subsets of W sðMeÞ and W uðMeÞ. For some parameter values, an orbit that leaves pe while
coming out of the annulus Ae in four-dimensional phase space, may return to the annulus and eventually
complete a Silnikov-type homoclinic orbit shown in Fig. 8. The figure shows that the orbit left Ae returns to
itself. Speaking in terms of responses of circular plate, we may say that the orbit implies a motion starting
from a standing wave returns to the standing wave thru a traveling wave. Contrary to the standing wave given
by the sine mode only, in view of Eq. (3), the traveling wave consists of not only the sine mode but also the
cosine mode.

The existence of such an orbit connecting the saddle focus pe is examined in two steps. In the first step, using
higher-dimensional Melnikov theory, one obtains condition for W uðpeÞ \W sðAeÞa+, i.e. when a trajectory
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Fig. 7. Dynamics on (I,j) plane in the neighborhood of I ¼ I r for x ¼ y ¼ 0.
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Fig. 8. Silnikov-type homoclinic orbit to pe.

M.H. Yeo, W.K. Lee / Journal of Sound and Vibration 293 (2006) 138–155 151
leaving pe comes back in the neighborhood of Ae. In the second step, we have to examine whether this orbit (in
W uðpeÞ) comes back in the domain of attraction of pe [17,21].

In order to begin the first step we evaluate the Melnikov function, which gives a measure of the distance
between two manifolds, W uðpeÞ and W sðAeÞ. The condition W uðpeÞ \W sðAeÞa+ is satisfied when the
Melnikov function is equal to zero [18]. It is computed in the following manner [1,24,25]:

MIr ¼

Z 1
�1

qH0

qx
gx þ

qH0

qy
gy þ

qH0

qI
gI

� �
dt, (52)
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where the integrand has been evaluated at any arbitrary point on G at I ¼ Ir. Functions H0, gx, gy and gI are
given in Eq. (27). After some calculations we can express the Melnikov function as follows:

MIr ¼ �½H1ð1Þ �H1ð�1Þ� � b

Z 1
�1

½cþ gbðbþ 3IrÞ cot q1�ðcsc q2
1Þ _q1 dt, (53)

where H1ð1Þ and H1ð�1Þ denote H1ðx; y; Ir;jÞ when t!1 and t!�1, respectively. We can observe
that j! jc þ Dj and j! jc, respectively, as t!1 and t!�1, and that ðx; yÞ ! ð0; 0Þ as t!�1.
Therefore, H1ð1Þ ¼ H1ð0; 0; I r;jc þ DjÞ and H1ð�1Þ ¼ H1ð0; 0; Ir;jcÞ. In view of Eqs. (28b) and (42),
Melnikov function (53) is reduced as follows:

MIr ¼
ffiffiffi
2
p

fI3=2r ½cos 3jc � cos 3ðjc þ DjÞ�

� b

Z p�q̂1

q̂

½cþ gbðbþ 3IrÞ cot q1�csc q2
1 dq1

¼
ffiffiffi
2
p

fI3=2r ½cos 3jc � cos 3ðjc þ DjÞ� � 2bc cot q̂1. ð54Þ

In view of Eqs. (41b) and (44) and the expression of jc in Eq. (50), we can see that when the Melnikov
function vanishes the value of K1 becomes

KM
1 ¼

ð1þ 2K2Þ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8K2 þ 24K2
2

q , (55)

where K2 ¼ b=Ir. In derivation of Eq. (55) a negative sign of KM
1 has been neglected, since c and f are positive.

Since Ir4I14� b=2, we have �2oK2o0.
In order to begin the second step we have to check whether the unstable manifold of pe has a change of angle

Dj such that it lies in the domain of attraction in Ae of pe (see Figs. 7 and 8). The condition is

jsojc þ Djþ 2mp=3ojn; m 2 Integer; (56)

where js and jc are defined in Eq. (50). Hamiltonian function remains constant on the homoclinic orbit, that
is, we can use relation Lð0;jnÞ ¼ Lð0;jsÞ. The relation is finally reduced toffiffiffi

2
p

fI3=2r ½3K1ðjn � jsÞ þ cos 3jn � cos 3js� ¼ 0. (57)

Using fI ra0 and Eq. (50) we can reduce Eq. (57) to

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2

1

q
þ 3K1jn � K1 sin

�1 K1 þ cos 3jn ¼ 0 (58)

from which jn can be obtained. In view of Eqs. (50) and (58) we come to know that js, jc and jn are given by
K1. Identifying K1 with KM

1 and noting that

Dj ¼ cos�1ð1þ K2Þ � p, (440)

we would like to determine values of parameters K1 and K2 satisfying two conditions. Now js, jc, jn and
jc þ Dj are represented as functions of K2 via Eq. (55). The first three are denoted by thin lines and the last by
thick lines in Fig. 9. In the figure thick and solid line denotes the region ð�1:0328 ¼ K1

2oK2oK2
2 ¼ �0:1667Þ

where two conditions for the existence of Silnikov-type homoclinic orbit are satisfied. In view of Eq. (55)
K2 ¼ K1

2 and K2
2 are corresponding to K1 ¼ KM1

1 ¼ 0:2652 and KM2
1 ¼ 0:7698, respectively, as shown in

Fig. 10. Taking b ¼ �0:2868, we have an interval 0:833075oso5:16137 corresponding to the interval
�1:0328oK2 ¼ 3b=so� 0:1667. Fig. 11 shows a surface representing a set of values of c, f and s, on which
two conditions (55) and (56) are satisfied, when b ¼ �0:2868. In order to seek Silnikov-type homoclinic orbit
or strange attractor with Smale horseshoe structure we integrated numerically Eq. (26) with many
combinations of parameter values and initial conditions. Fig. 12 shows a typical long-term behavior, which is
a periodic orbit obtained numerically by taking e ¼ 0:001, K1 ¼ 0:402235, K2 ¼ �0:239, g ¼ 3:787 s ¼ 3:6,
f ¼ 0:891, c ¼ 0:832827, b ¼ �0:2868, xð0Þ ¼ 0:419643� 10�8, yð0Þ ¼ 0:154596� 10�8, Ið0Þ ¼ 1:20063,
yð0Þ ¼ 0:90925. In spite of all efforts, neither Silnikov-type homoclinic orbit nor strange attractor with
Smale horseshoe structure has been found, which is a remarkable contrast to what those had been reported to
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be obtained numerically by Feng and his colleagues [18,22]. Unravelling the reason why we have failed to
observe any numerical evidences of global bifurcation result obtained by Kovačič and Wiggins’ method [17] is
beyond the scope of the work. We can, however, only conjecture on the reason in two ways. First, the system is
so sensitive to values of parameters that the first order of approximation (26) may not be good enough for the
global bifurcation. Second, the homoclinic orbit and the strange attractor are so sensitive to initial conditions,
which means that we might not have tried enough number of initial conditions to find those. Further study is
needed.
5. Conclusion

The global bifurcations in modal interactions of an imperfect circular plate with one-to-one internal
resonance are investigated. The case of the third-order subharmonic resonance, in which an excitation
frequency is near triple natural frequencies, is considered. The equations governing nonlinear oscillations of an
imperfect circular plate are reduced to a system of non-autonomous ordinary differential equations via
Galerkin’s procedure. The method of multiple scales is used to obtain a system of autonomous ordinary
differential equations, and then Kovačič and Wiggins’ method is used to investigate the global dynamics of the
plate. Having found a region of parameters where a sufficient condition for the existence of Silnikov-type
homoclinic orbit is satisfied, we failed to observe any numerical evidences of global bifurcation.
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